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Nonlinear Decoupling Control of Aircraft Motion

Zhou Zhigiang*
Northwestern Polytechnical University, Shaanxi 710072, People’s Republic of China

In this paper, decoupling theory for nonlinear multivariable systems based on differential geometry control
theory is intreduced. The influence of position exchange in components of input and decoupling variable on the
decoupling law of the nonlinear system is discussed. The calculation of equilibrium points for nonlinear decoupling
systems is also studied. For the engineering application, linear approximation of the aircraft nonlinear decoupling
law is studied. The error made by the approximation is acceptable. Three types of decoupling controls for aircraft
nonlinear motion are studied. Three basic modes of nonlinear direct force control and two types of extraordinary
maneuvers are realized through the nonlinear decoupling controls. The calculation results show that the nonlinear
decoupling control law can realize the modes of nonlinear direct force control and the extraordinary maneuvers

thoroughly.
Nomenclature

b = wing span, m

c = wing mean chord, m

g = gravitational acceleration, m/s?

L., 1, I, I,; = momentsand product of inertia about body axes,
kg-m?

L,M,N = rolling, pitching, and yawing moments about
body axes, kg-m?/s’

p.q.r = angular velocity components along roll, pitch,
and yaw axes of aircraft, deg/s

g = 1pV? kg/m-s

S = wing plan area, m?

T = thrust, kg-m/s2

\'% = velocity of aircraft center of mass, m/s

X, Y,Z = aerodynamic forces in body axes, kg-m/s?

X, 9,2 = body axes of aircraft

o = angle of attack, deg

B = angle of sideslip, deg

Y = angle of climb, deg

8us 8ry 8 = aileron, rudder, and elevator deflection angles,
deg

8,85 = deflection angles of direct side force and direct
lift control surfaces, deg

ér = throttle

0 = pitch angle, deg

o = angle between thrust axis and body x axis, deg

® = angle of bank, deg

¥ = azimuth angle, deg

Subscripts

g)a, L{S ,r rée B { denote partial derivatives with

8e. 87,61 respect to respective quantity

e = equilibrium point

Introduction

NE of the main functions in active control technology (ACT) is
direct force control, which decouples parts or all of the motion
parameters of the aircraft with the direct force control surfaces in
order to improve flight performance and flying qualities. Therefore,
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direct force control can be characterized as decoupling control of
multivariable systems.

With research on fourth-generation combat aircraft and the ap-
pearance of the all-aspect missile, the fighter with the ability of
decoupling between heading angle and flight path will be of benefit
in air combat. The decoupling control of the aircraft motion is one
of the means to increase aircraft agility. Thus, decoupling control
of aircraft flight provides a new theoretical approach to investigate
direct force control and aircraft agility.

In recent years, several researchers have applied nonlinear de-
coupling theory and dynamic inversion approach to design control
systems for aircraft.'™ In a slightly different approach, the flight
control system of a helicopter is designed using exact linearization
theory by state feedback and nonlinear transformation.* A singular
perturbation approach has been used in Ref. 5 to avoid difficulty
due to near singularity in the input-output map. Zero dynamics for
a flight control system are obtained in Ref. 6 in order to examine the
stability of the decoupled system. An application of nonlinear in-
version theory to the design of flight control systems is presented in
Ref. 7. The synthesis procedures are similar to those in Ref. 1. One
of the sets of output variables chosen in Ref. 7 is (¢, «, ) control,
which is also used in this paper. However, the control laws derived
and the model of the aircraft here are different. The control system
is divided into inner and outer control loops in Ref. 7, but the control
laws here are derived directly based on decoupling control theory.

Application of decoupling theory for nonlinear multivariable sys-
tems based on differential geometry control theory® is presented
here. Three sets of output variables are chosen, which differ from
those of Refs. 1-6. Three types of decoupling controls correspond-
ing to three sets are used to investigate direct force control and
two types of aircraft agility maneuvers. The influence of position
exchange in components of input and decoupling variable on the
nonlinear decoupling law of nonlinear systems is given. The calcu-
lation of equilibrium points for nonlinear decoupling systems and
linear approximation of the aircraft nonlinear decoupling law are
also studied here.

Synthesis of Nonlinear Decoupling Control Law

The nonlinear state equation of the aircraft motion can be de-

scribed by
x = A(x) + B(x)u, y=Cx) ey

where A(x), B(x), and C(x) are an n x 1 vector, # x m matrix, and
m x 1 vector, respectively, as functions of state variable x.

Consider a nonlinear control law, which is composed of a nonlin-
ear feedback of state variables and a nonlinear input transformation
as follows:

u=FXx)+ Gx)v @)
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where F(x) and G(x) are m x 1 and m x m matrices, respectively,
and G(x) is assumed to be nonsingular.

Applying the control law (2) to the system Eq. (1) gives the closed-
loop system

%= AE) + Bx)v, y=C(x) 3)

where

A(x) = A(x) + B(x)F(x), B(x) = BX)G{x)

The closed-loop system (3) is said to be decoupled by the non-
linear control law (2) if the ith input v; affects only the ith output
y; foralli = 1,2,...,m, where v; and y; are the ith components
of v and y, respectively.

Based on differential geometric control theory,?® the nonlinear
decoupling control problem of the nonlinear system (1) by means of
a static feedback [Eq. (2)] is solvable if and only if the m x m matrix

ri—1

LyLy ') Ly, Ly a®)
B*(x) = : : *

Ly L7 e (x) Ly, L} en(x)

which is defined for all x in a neighborhood of an initial point xo, is
nonsingular for all x in the neighborhood of the point x,.

A multivariable nonlinear system of the form of Eq. (1) has a vec-
tor relative degree {r1, 72, . . ., rm} at 2 point xo if 1) Ly, L’;c,- x)=0
foralll < j <m,foralll <i <m,forallk <r; — 1, and for
all x in a neighborhood of xp, and 2) the m x m matrix B*(x) is
nonsingular at x = xy.

The definition of the differential operator L 4c;(x) is as follows.
If A is a real-valued function and f is a vector field, then

n 8)\’
Lsr(x) = _(')—;ﬁ(x)

The function L‘}k(x) satisfies the recursion

a(La)

L* A =
f (x) %

fx)

with L‘}A(x) = A(x).
If B*(x) is nonsingular at xy, F(x) and G(x) in the nonlinear
decoupling law (2) are given by

F(x) = —B*" (x)[A*(x) + D*(x)]

5
G(x) =—B""(x)A ©)

where A = diag{A, Aq, ...
constant matrix, and

Amy (i #0,i =1,2,...,m)is a

A" = (Liei(x) L7ic;(x) L7 en()"
D*(x) =

i1 L2 7 er(x) + - - 4 @i Lacy (x) + ayoey (x)

Oliri—lLC{_ICi (x) + - + i Laci (x) + aoci (x)

amr,,,—lL:\m—-lcm(x) +eet amlLACm(x) + am()cm(x) .

where oy, 1, Cir,—2, ..., o1, &0 ( = 1,2, 3, ..., m) are constants,
which can be chosen to specify the dynamic behavior of the decou-
pled closed-loop system. The output vector y satisfies the following
differential equation:

(ri

(ri) (ri—1 -2
i+ i1y : + ir 2 et Olil)’,-(l) + oy = Ay

i=12,...,m (6)

The influence of position exchange in components of the input
and the decoupling variable on the nonlinear decoupling law and
the closed-loop system is given by the following two theorems.

Theorem 1. When the component y; (( = 1,2, ..., m) of y(x)
exchanges its position, the feedback matrix F (x) in Eq. (5) remains
unchanged, and the column of matrix G (x) in Eq. (5) exchanges its
position in the same way as y;; A(x) in the closed-loop system (3)
remains also unchanged and the column of matrix B(x) exchanges
its position similar to G(x).

Theorem 2. When the component u; (i = 1,2,...,m) of u
exchanges its position, the row of the matrices F(x) and G(x) in
Eq. (5) exchanges its position, respectively, in the same way as u;;
matrices A(x) and B(x) remain unchanged.

If the control law given by Eq. (5) for output y, = (c1(x),
c2(x), ..., cy(x)T is known, for example, it is very easy to obtain
the control law for output yp = (c2(x), c1(x), ..., ¢y )T from the
control law for output y, according to Theorem 1.

Equilibrium Points of Nonlinear Decoupling System

Let x, be one of the equilibrium points of the nonlinear system
(1). Here, u, is the input of the system of Eq. (1) corresponding to
x,. For the nonlinear decoupled closed-loop system (3), v, of the
new input v corresponding to the equilibrium x, is given by

ve = AU [B*(x)u, + A (x,) + D*(x,)] M
or
ve = AT'B* () u, — F(x,)] ®)
The equilibrium value y, of the output y is given by
ye = C(x.)
Then, v, can be also obtained by

Vie =ai()yie/)"iv i=12,....,m )

The equilibrium points of the nonlinear decoupled system were
studied by the author for the first time. The study not only has theo-
retical significance but is also meaningful for engineering problems.
Because the engineering problems are normally complicated, the
nonlinear decoupling control law of Eq. (5) can be obtained mostly
by numerical calculation with computers. Equation (7) can be used
to verify the correctness of the numerical results.

Approximate Solution of Nonlinear
Decoupling Control Law

The decoupling control law of Eq. (5) for the aircraft in large
maneuvers is nonlinear and can be generally obtained only through
numerical calculations. If the on-line decoupling control law is re-
quired, a large amount of numerical calculations will be the main
obstacle for realization. One way to reduce the amount of calcu-
lations is the search for an approximate solution of the nonlinear
decoupling control law.

Let F and G be the approximate solutions of F(x) and G(x),
respectively. Then F and G are given by

aF(x)
Ix

F:

, G =GX)|xmn, (10)

x=x,

where x, is one of the equilibrium points of the decoupled closed-
loop system given by Eq. (3).

Nonlinear Decoupling Control of Aircraft Motion

According to the above-mentioned theory, three modes of aircraft
decoupling control are investigated. The nonlinear decoupling laws
of an aircraft are derived for the modes described below:

Mode A
8
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Mode B Z =gS[C.a. B)+ Cus, (@87 + Cos, ()8, ]
y=[a . u=[8f] 12) T =T+ Ts,0r
6 8.
Mode C _ b
o _ L= qu{C,(a, B) + —[C, @r + Gy (@)p] + Cis, @5,
o 8o 2V
y=1|81, u=| 5 13)
@ 5 + Cys, ()8, + Cs, ()8,

The basic equations of motion for a rigid-body aircraft are given :
by M = ciSé[cm(a, B) + 5= Cug@)q

2V
V= (M - gsine) cosc cos f
" + Cs, (@8, + Cms, <a>af]
Y .
+ (—— +gcos€sin(p> sin 8
m

N= tsz{cn (@ B)+ %[cn, (@7 + Cop @] + Cog, (@5,

Z — Tsino .
+{ ——— +gcosfcosg |sinacos B
+ Cné'r ((1)5, + CnBC (O()SL}
. [(X+Tcoso)/mV — (g/V)sinf + rsin ] sina
a=q-—
COSﬁ My = M()+M8T8T
[(Z — Tsino)/mV + (g/ V) cosBcosp — psin Blcosa
+ cos B As an example, the nonlinear decoupling control law given by

Eq. (5) for mode A is derived as follows.

. X+Tcoso g For mode A, A(x), B(x), and C(x) in the nonlinear state equation
B = ‘—[ <T — < sin 9) sin 8 + r:l cosa given by Eq. (1) are defined as

Ax) = (A(x)1, A(x)2, A(x)3, A(x)a)"

Y g .
+ (W v cosd Sm‘/’) cos —a11Cp +apzcos(e + o) + g sin(e — )
. g — anCy — ansin(a + o) + 2 cos(@ — 0)
Z—-Tsino g . . = |4
— — + v cosfcosp |sinf — plsina a31Cpn + a3Crgq +ass
q 14
. I, -1 12 L—L\ I,
p=[<y1 Z—I;)qr+(1—y1—)l—pq A .
x *7z z x CxSf szie
Cs, C
v (i =n) 1L BG) = (b1 b)) = | [0 % (1s)
I I, D Cus;  Chs,
. 1 I, -1 I 0 0
¢ =1 (M+Mr)+——pr+—0"-p?
y y y
y=Cx) =0 =@ -a,6) (16)
. IJ?Z Iy“‘Ix Iy—Iz IXZ
r= [ (lez T, rq + A 1 T where
1 (1, 1 x=1{V,a,q,0), u=1{87,8}"
+-—(—3L+N)}— Or. 0}
L\ D qs Ty
where M= =y
=1— (72 qS
D=1 (Ixz/l"lz) az] = ’Z—V, ax = nj—(‘)/
Tt is necessary to add three kinematic equations: R
] a c 4 gSc ¢ My,
— i 31 = — 32 = TN as3 =
8 =gcose —rsing I, I, 2V I,
@ =p+(gsing + rcosp)tand - qs - 7
) Crs, = Cps,, Crs, = ——Chps,
¥ = (g sing + rcos )/ cosH
. = qs
The aerodynamic forces and moments as well as the force and mo- Casy = _m_VCL‘Sf
ment created by engine thrust are defined in the following expan-
sions: -~ qs - gSc
) Cape = =~ Cla, Crs, = qI Crms;
X = gS[Ca(e, B) + Cus, (@)87 + Cup, (@)5] ’
~ N

Y = GS[Cy(@, B+ Cya, (@8, + Cya, @3, + Cya, (@3] Cmte = 7= Coi
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The nonlinear decoupling law for mode A is obtained as follows: 151
é S, é 38, Q %’u,;
By t=| A z 3
—Cuns;, —Cu; g 3
- fon
A =det B*(x =6563—6565 _ L L 05 L
® e e T B T R v m—y T30 1060
g Time, Sec Time, Sec
a2, Cp + ay sinfe + o) + = cos(a — 6) -
A*(x) = v 0.0021
a3.Cp + a32Cmgq + 033 0.0k
ofy
] 2
a0 —a) =
D*(x) = —0.004-
b + aq |
. . . —6.0) 1 . ) . L N
M 0 B ¥ Ry () 00 20 2060
= 0 A Time, Sec Time, Sec
2

The output vector y of the decoupled closed-loop system satisfies
the following:

y + oy = Ay, 0 + 216 + af = Aovy
The equilibrium input v, required for a desired y, and 6, is given by 6. 25 —0A10‘0 7
) V.00 . 9e o Time, Sec Time, Sec
le = —/— 2 = ———
A Ay 0.051 1007
Modes A and B can be used to realize the three basic modes A,, o 0.0 1 8
o, and oy of the nonlinear direct lift control. z EQ
~o.0s} /2 z
Calculation Results
Consider the F-16 combat aircraft® with a direct lift control sur- M b
face. Three basic modes A,, @, and a; of the nonlinear direct lift Time, Sec Time, Sec
control for the F-16 aircraft are realized by the modes A and B of
the decoupling control. Formode A,, Ax = 0, A6 = Ay; for mode 70r 1.5F
sof 2
30.0 200 " ! @ 05
5 3
s 30r s 1
g 200 2 10.0
N > 1l -05- 2
& 'g 0 " 2 1 L t ! -1.0 1 I i 3 1 |
> 100 o 00 00 20 40 6.0 ] 2.0 20 60
Time, Sec Time, Sec
0.0 . s 1000y
0.0 2.0 4.0 6.0 00 20 40 6.0
Time, Sec Time, Sec
3
15.0¢ 0.06 2
2 g
) 0.04- ®
10.0f
o 2 g
3 < 0.02F
= = 0. 1 ' L 1 ) J
5.0 . 00 2.0 40 5.0
0.9 Time, Sec
0.0 F R Y (Y R ‘0-023 5 A —— Fig. 2 Time histories for roll angle capture maneuver by nonlinear
'Time’ Sec : ’ “Time, Sec : decoupling control: 1) exact solution and 2) approximate solution.
15.0p 20.0p
% 12 ay, Ay =0, A0 = Acw; for mode oy, A = 0, Ay = —Aa. Two
10.0l 1 @ 00 modes of extraordinary maneuvers realized by mode C are level
w o 2 %i ' yaw, in which the demanded angle of sideslip will be achieved and
- :2" the initial airspeed and 1 g wings level flight are maintained, and roll
3.0 —20.0r s 2 angle capture, in which the demanded roll angle will be obtained
! and at the same time the angle of sideslip and the angle of attack
BT ¥ S 7 = are maintained.
Time, Sec Time, Sec ‘ The Mach number and altitude in the following calculations are
0.8 and 6096 m.
Fig. 1 Time histories of mode a by nonlinear decoupling control: The time histories of mode o realized by nonlinear decou-

1) exact solution and 2) approximate solution. pling mode A are given by curves 1 in Fig. 1. The constants in
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the decoupling mode A, which is used to realize mode oy, are given
as follows:

o = 2.0, Ol = 125, 0y = 5.0

A =20, A =125

The equilibrium point for the decoupling mode A is given by

V =253 m/s, a = 2.05 deg, g = 0 deg/s
6 = 2.05 deg, 85 = 0.0 deg, 8, = 1.11 deg
v; = 0.0 deg, v, = 2.05 deg

The step input for v in Fig. 1 is given by Av = (0 deg, 10 deg)”.
All curves in Fig. 1 are increments of the state variables and deflec-
tion angles relative to the equilibrium point. During the realization
of mode «; the path angle y remains zero throughout. The time
histories of mode & created by the approximate decoupling control
law F and G are presented by curves 2 in Fig. 1. It can be seen
from the figure that the etror made by the approximation is small
and acceptable.

The time histories of the roll angle capture maneuver for the F-16
are illustrated in Fig. 2. The curves 1 in Fig. 2 are the time histories
created by the nonlinear decoupling mode C. The constants in the
decoupling mode C, which is used to realize the maneuver, are as
follows:

oy = 12.5, o1 = 50, Oy = 8.0
O = 4.0, O3p = 13.0, o3 = 6.0
A =125, A, = 8.0, A3 =13.0

The equilibrium point for the decoupling mode C is given by

V =253 m/s, o =2.2deg, g = 0deg/s

6 =2.2deg, B =0.0deg, ¢ = 0.0 deg

p = 0deg/s, r = 0 deg/s, 8, = 1.21 deg
8, = 0 deg, . = 0deg, vy = 2.2 deg

v, = 0 deg, vz = 0 deg

The step input for v in Fig. 2 is given by Av = (0 deg,
0 deg, 50 deg)”. All curves in Fig. 2 are increments of the state
variables and deflection angles relative to the equilibrium point.
From the curves it can be seen that the roll angle capture maneuver
can be exactly realized by the nonlinear decoupling control law. Co-
operative movements of the deflections é,, 8,, and §, are required.
Therefore, the decoupling control system is needed to reduce the
burden on the pilot during the maneuver.

Curves 2 in Fig. 2 are the time histories produced by the approx-
imate decoupling control law F and G given by Eq. (10). It can be
seen from the figures that the error made by the approximation is

small and acceptable. The reason for this is that at the calculation
state of the example the aerodynamic coefficients are linear. Since
F and G in the approximate control law are constant matrices, the
amount of numerical calculations can be dramatically reduced.

Conclusions

Decoupling theory for nonlinear multivariable systems based on
differential geometry control theory is applied to design a nonlinear
aircraft control system. The influence of the position exchange in
components of input and decoupling variable on the decoupling
law and closed-loop system is given by Theorems 1 and 2. If the
control law for output y4 = (c1(x), ¢2(x), ..., ¢,(x))7 is known,
for example, it is very easy to obtain the control law for output
yp = (c2(x), c1(x), - . ., ¢, (x))T from the control law for output y,
according to Theorem 1.

The calculation of equilibrium points for the nonlinear decoupling
system is given in the paper. It can be used to verify the correctness
of the nonlinear decoupling control law obtained by numerical com-
putation. For engineering applications, a linear approximation of the
aircraft nonlinear decoupling control law is presented.

Modes A, B, and C of aircraft decoupling control are presented.
Modes A and B can be used to realize three basic modes of direct
lift control. Mode C can realize roll angle capture and level yaw
maneuvers. The simulation results show that the decoupling con-
trol modes can realize the modes of nonlinear direct force control
and some aircraft agility maneuvers. The error made by the linear
approximation is acceptable.
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